


Mobile application development

• What is mobile application development?
• Mobile application development is the process

of making software for smartphones, tablets and
digital assistants, most commonly for the
Android and iOS operating systems.

• The software can be preinstalled on the device,
downloaded from a mobile app store or
accessed through a mobile web browser.

• The programming and markup languages used
for this kind of software development include
Java, Kotlin, Swift, C# and HTML5.



Three main types of Mobile
Applications

• Progressive Web Apps-web-based applications that
work on different platforms and devices-combine the
best features of both web and mobile apps -HTML,
CSS, and JavaScript-Twitter Lite, Flipkart, Pinterest,
Uber etc.

• Native Applications-developed for a specific platform,
such as Android or iOS, using the platform's native
programming languages and development tools, such
as Swift or Objective-C for iOS and Java or Kotlin for
Android

• Hybrid Applications-Hybrid apps combine elements
of both web and native apps- run on multiple
platforms-single codebase that can be deployed
across different operating systems, such as iOS and
Android.



• What is Android OS?
• Android OS is a Linux-based mobile operating system that

primarily runs on smartphones and tablets.
• Android is an operating system developed by Google. It is

a modified version of Linux kernel and other open-source
software.

• Today android used in many electronic devices like
touchscreen mobile, tablets, Android TV, Android Auto for
cars, and Android watches, each with a specialized user
interface.

• Android is also used on the game, digital cameras other
electronics.

• The Android platform includes an operating system based
upon the Linux kernel, a GUI, a web browser and end-user
applications that can be downloaded.



• Android is based on open source software,
but most Android devices come preinstalled
with a suite of proprietary software, such as
Google Maps, YouTube, Google Chrome and
Gmail.



• Android OS versions

• Google makes incremental changes to the
OS with each release.

• This often includes security patches and
performance improvements.



Evolution of Android

• Android 1.0. Released Sept. 23, 2008. Included a suite of Google
apps, including Gmail, Maps, Calendar and YouTube.

• Android 1.5 (Cupcake). Released April 27, 2009. Introduced an
onscreen virtual keyboard and the framework for third-party app
widgets.

• Android 1.6 (Donut). Released Sept. 15, 2009. Introduced the
ability for the OS to run on different screen sizes and resolutions;
added support for CDMA networks.

• Android 2.0 (Eclair). Released Oct. 26, 2009. Added turn-by-turn
voice navigation, real-time traffic information, pinch-to-zoom
capability.

• Android 2.2 (Froyo). Released May 20, 2010. Added dock at the
bottom of the home screen and voice actions, which allows users
to tap an icon and speak a command. Also introduced support for
Flash to the web browser.



• Android 2.3 (Gingerbread). Released Dec. 6, 2010. Introduced
black and green into the UI.

• Android 3.0 to 3.2 (Honeycomb). Released Feb. 22, 2011. This
release was exclusive to tablets and introduced a blue,
space-themed holographic design.

• Android 4.0 (Ice Cream Sandwich). Released Oct. 18, 2011.
Introduced a unified UI to both tablets and smartphones;
emphasized swiping as a navigational method.

• Android 4.1 to 4.3 (Jelly Bean). Released July 9, 2012, Nov. 13,
2012, and July 24, 2013, respectively. Introduced Google Now, a
day planner service. Added interactive notifications and improved
voice search system.

• Android 4.4 (KitKat). Released Oct. 31, 2013. Introduced lighter
colors into the UI, along with a transparent status bar and white
icons.



• Android 5.0 (Lollipop). Released Nov. 12, 2014.
Incorporated a card-based appearance in the design with
elements such as notifications and Recent Apps list.
Introduced hands-free voice control with the spoken "OK,
Google" command.

• Android 6.0 (Marshmallow). Released Oct. 5, 2015. This
release marked Google's adoption of an annual release
schedule. Introduced more granular app permissions and
support for USB-C and fingerprint readers.

• Android 7.0 and 7.1 (Nougat). Released Aug. 22, 2016 and
Oct. 4, 2016, respectively. Introduced a native split-screen
mode and the ability to bundle notifications by app.



• Android 8.0 and 8.1 (Oreo). Released Aug. 21, 2017
and Dec. 5, 2017, respectively. These versions
introduced a native picture-in-picture (PIP) mode and
the ability to snooze notifications. Oreo was the first
version to incorporate Project Treble, an effort by
OEMs to provide more standardized software updates.

• Android 9.0 (Pie). Released Aug. 6, 2018. This version
replaced Back, Home and Overview buttons for a
multifunctional Home button and a smaller Back
button. Introduced productivity features, including
suggested replies for messages and brightness
management capabilities.



• Android 10 (Android Q). Released Sept. 3, 2019.
Abandoned the Back button in favor of a swipe-based
approach to navigation. Introduced a dark theme and
Focus Mode, which enables users to limit distractions
from certain apps.

• Android 11 (Red Velvet Cake). Released Sept. 8, 2020.
Added built-in screen recording. Created a single

location to view and respond to conversations across
multiple messaging apps. This version also updated
the chat bubbles so users can pin conversations to
the top of apps and screens.



• Android 12 (Snow Cone). Released Oct. 4, 2021.
Added customization options for the user interface.
The conversation widget let users store preferred
contacts on their home screens. Added more privacy
options, including sharing when apps access
information such as camera, photos or microphone.

• Android 12L. Released March 7, 2022.The L stands
for larger screens. This update aimed to improve the
user interface and optimize for the larger screen of a
tablet, foldable or Chromebook. This update added a
dual-panel notification center for tablets and foldables.



• Android 13 (Tiramisu). Released Aug. 15, 2022. Included more
customizable options including color, theme, language and music.
Security updates included control over information apps can access,
notification permission required for all apps and clearing of personal
information on clipboard. This update enables multitasking by sharing of
messages, chats, links and photos across multiple Android devices --
including phones, tablets and Chromebooks.

• Android 14 (Upside Down Cake). Released Oct. 4, 2023. Included more
customization options for the lock screen and wallpapers. OS efficiency
was improved to decrease the strain on a phone’s battery. For
accessibility, Google added larger scalable fonts for vision-impaired
users and camera flashes to give hearing-impaired users another visual
cue when they get a notification. Security updates include notifications of
changes in data-sharing policies for third-party applications, enhanced
PIN security features and better support for passkey authentication
across more applications.



Building Blocks of Android
• The building blocks of Android are the fundamental components

that make up the structure of an Android application.
• These building blocks work together to create a functional and

interactive user experience.
• There are four building blocks to an Android application:
• Activity
• Intent Receiver
• Service
• Content Provider
• Not every application needs to have all four, but your application

will be written with some combination of these.
• Once you have decided what components you need for your

application, you should list them in a file called
AndroidManifest.xml. This is an XML file where you declare the
components of your application and what their capabilities and
requirements are.



• Activity :
• Activities are the most common of the four Android

building blocks.
• An activity is usually a single screen in your application.
• Each activity is implemented as a single class that

extends the Activity base class.
• When a new screen opens, the previous screen is paused

and put onto a history stack.
• The user can navigate backward through previously

opened screens in the history.
• Activities are defined in Java or Kotlin classes and are

crucial for handling user interactions.



• Intent and Intent Filters :
• Android uses a special class called Intent to move from screen to

screen. Intent describe what an application wants done.
• Intents are messaging objects used to communicate between

different components within an application or between different
applications.

• They facilitate the transfer of data and trigger actions.
• The two most important parts of the intent data structure are the

action and the data to act upon.
• Typical values for action are MAIN (the front door of the

application), VIEW, PICK, EDIT, etc. The data is expressed as a
Uniform Resource Indicator (URI).

• For example, to view a website in the browser, you would create an
Intent with the VIEW action and the data set to a Website-URI.

• new Intent(android.content.Intent.VIEW_ACTION,
ContentURI.create("http://anddev.org"));

• Java files use Intents to facilitate communication between
different components of the application, such as starting new
activities or services.



Types of Intents

• Explicit Intents-Launching an activity within the
same application

• An Explicit Intent is used to launch a specific
component within the same application,
typically by providing the target component's
class name.

• Intent explicitIntent = new
Intent(CurrentActivity.this,
TargetActivity.class);

• startActivity(explicitIntent);



Implicit
• An Implicit Intent is used when the system is asked to

find a suitable component to handle the specified
action, such as opening a web page, sending an
email, or capturing a photo).

• Action or Action and Data Specified:
– Instead of specifying a particular component, an Implicit

Intent includes an action (e.g., "ACTION_VIEW,"
"ACTION_SEND") and, optionally, data (e.g., a URI).

– The system resolves the Intent and launches the
appropriate component capable of handling the specified
action.

• Example: Opening a web page:
– Intent implicitIntent = new Intent(Intent.ACTION_VIEW,

Uri.parse("https://www.example.com"));
startActivity(implicitIntent);





• Services:

• Services are components that run in the
background, independent of any user interface,
to perform long-running operations or handle
tasks such as playing music or downloading
data.

• the media player activity could start a service
using Context.startService() to run in the
background to keep the music going.

• Services don't have a UI but can communicate
with other application components.



• Content Provider :
• Applications can store their data in files, a SQLite

database, preferences or any other mechanism that
makes sense.

• Content Providers manage the application's data and
enable sharing data between applications.

• A content provider, however, is useful if you want your
application's data to be shared with other applications.

• A content provider is a class that implements a
standard set of methods to let other applications
store and retrieve the type of data that is handled by
that content provider.



• Broadcast Receivers:

• Broadcast Receivers respond to system-wide
broadcast announcements or messages.

• They allow the application to receive and
respond to events like the completion of a
download or a change in network
connectivity.

• Broadcast receivers can initiate other
components or services.



• Fragments:

• Fragments represent a portion of a user
interface and can be combined to create a
complete UI.

• Fragments are often used within activities to
build more modular and flexible user
interfaces, especially for tablet layouts or
large-screen devices.



• Layouts and Views:

• Layouts define the structure of the user
interface

• Views are the UI elements such as buttons,
text fields, and images.

• Android provides a variety of layouts and
views that can be combined to create the
desired user interface.



• Manifest File:

• The AndroidManifest.xml file is a fundamental
configuration file in an Android application.

• It contains essential metadata and declarations
required by the Android Operating System to
understand the structure and behavior of the app.

• Below are the key components typically found in the
AndroidManifest.xml file:

• It includes details like the app's package name, the
components it consists of, required permissions, and
more.



• Explanation of key elements:
• Package Declaration (package attribute):

– Specifies the unique identifier for the application. It's typically in reverse domain format.
• Permissions (<uses-permission> element):

– Declares the permissions required by the application. For example, the INTERNET permission
is declared to allow internet access.

• Application Information (<application> element):
– Contains general information about the application, such as its icon, label, theme, and

whether it supports right-to-left (RTL) languages.
• Launcher Activity (<activity> element with <intent-filter>):

– Declares the main activity of the application, which is the entry point. The <intent-filter>
specifies that it should respond to the MAIN action and be launched as the main activity.

• Other Components (<activity>, <service>, <receiver>, <provider>):
– Additional components of the application, such as activities, services, broadcast receivers,

and content providers, are declared within the <application> element.
• Minimum and Target SDK Versions (<uses-sdk> element):

– Specifies the minimum and target SDK versions required by the application.



• <?xml version="1.0" encoding="utf-8"?>
• <manifest

xmlns:android="http://schemas.android.com/apk/res/a
ndroid"

• package="com.example.myapp">

• <!-- Permissions -->

• <uses-permission android:name="android.permission.
INTERNET" />

• <!-- Application Information -->

• <application

• android:allowBackup="true"
• android:icon="@mipmap/ic_launcher"
• android:label="@string/app_name"
• android:roundIcon="@mipmap/ic_launcher_round"
• android:supportsRtl="true"
• android:theme="@style/AppTheme">

• <!-- Launcher Activity -->

• <activity

• android:name=".MainActivity"

• android:label="@string/app_name">
• <intent-filter>

• <action
android:name="android.intent.action.MAIN" />

• <category
android:name="android.intent.category.LAUN
CHER" />

• </intent-filter>
• </activity>

• <!-- Other Activities, Services, Broadcast
Receivers, and Content Providers -->

• </application>

• <!-- Minimum and Target SDK Versions -->

• <uses-sdk
• android:minSdkVersion="16"
• android:targetSdkVersion="30" />

• </manifest>







Anatomy of Android

• The anatomy of Android refers to the various
components(4), layers(5), and concepts(User
Interface (UI), Intent System, Manifest File) that make
up the Android operating system and its application
development framework.

• Android architecture is also known as the Android
software stack.

• It can be categorized into five parts:
– Linux kernel
– Native Libraries (Middleware)
– Android Runtime
– Application Framework
– Applications





•
• Linux kernel exists at the root of android

architecture and is thus also called as the
heart of the android architecture.

• The device drivers, power management,
memory management, device management,
and resource access comes under the
responsibility of the Linux Kernel.



Native libraries such as WebKit, OpenGL,
FreeType, SQLite, Media, C runtime library (libc),
etc are on top of the Linux kernel.



•
• The core libraries and DVM (Dalvik Virtual

Machine) are there in android runtime.
• They are responsible for running android

applications.

• Originally being like JVM, DVM is optimized
for mobile devices to consume less memory
and to facilitate a fast performance.



•
• The Android framework is on the top of Native

libraries and android runtime.

• Android APIs like UI (User Interface), telephony,
resources, locations, Content Providers (data)
and package managers are a part of the Android
framework.

• For the development of the android application,
the Android framework facilitates a lot of
classes and interfaces.



Android Activity Lifecycle

• Android Activity Lifecycle is controlled by 7
methods of android.app.Activity class. The
android Activity is the subclass of
ContextThemeWrapper class.

• An activity is the single screen in android. It is
like window or frame of Java.

• By the help of activity, you can place all your UI
components or widgets in a single screen.

• The 7 lifecycle method of Activity describes
how activity will behave at different states.









• Android Activity Lifecycle Example

• It provides the details about the invocation of
life cycle methods of activity. In this example,
we are displaying the content on the logcat.

• Override a method from the superclass
(Activity in this case)







• Bundle parameter,
which is used to
restore the activity's
previous state if it was
previously destroyed
and recreated (e.g.,
due to a configuration
change).



Notifications and Toast messages

• Notifications and Toast messages are distinct
features in Android, each serving a different
purpose.

• Notifications are typically used to alert users
about events or updates even when the app is
not currently active, while

• Toast messages are used for displaying
short-lived messages within the app's UI.

• If you want to create a notification in Android,
you would typically use the NotificationManager
along with a Notification object.



Q. Name the widget used to display a short message.
List the members of that object and give an example.

• Case Study: Improving User Feedback with
Android Toasts

• Background: You are a developer working on a
mobile application for a social networking
platform. The app allows users to share posts,
comment on content, and interact with other
users. Users have provided feedback indicating
that they want more informative and
non-intrusive feedback for certain actions,
especially when posting comments or liking
posts.



• Implementing Toasts for Comment
Posting:When a user successfully posts a
comment, a short-duration Toast is displayed
at the bottom of the screen, confirming the
action.

• If there is an issue with posting the comment
(e.g., network error), an error Toast is
displayed, alerting the user to try again.



• // Inside the code for posting a comment
• if (commentPostedSuccessfully) {
• Toast.makeText(context, "Comment posted

successfully", Toast.LENGTH_SHORT).show();
• }
• else {
• Toast.makeText(context, "Failed to post

comment. Please try again.",
Toast.LENGTH_SHORT).show();

• }



Q. Name the widget used to display a short message.
List the members of that object and give an example.

• The widget used to display a short-duration message
in Android is called Toast.

• The Toast class is part of the android.widget package
and is commonly used to show brief messages to the
user.

• Members of the Toast Object:

• makeText() Method:
– Static method to create a new Toast object.

– Takes parameters such as the application context, the
text message to be displayed, and the duration of the
toast.

• show() Method:
– Displays the Toast message on the screen.



Example:Toast widget in Android

• // Inside an Activity or a Context

• Context context = getApplicationContext();
• CharSequence message = "This is a short

message!";
• int duration = Toast.LENGTH_SHORT;

• Toast toast = Toast.makeText(context,
message, duration);

• toast.show();



• In this example:
• context: The application context or activity

context where the Toast is being displayed.

• message: The text message to be shown in the
Toast.

• duration: The duration for which the Toast
should be displayed. It can be either
Toast.LENGTH_SHORT or Toast.LENGTH_LONG.

• makeText(): Creates a new Toast object with
the specified parameters.

• show(): Displays the Toast on the screen.



Android Widgets and Attributes

• In Android, a widget is a user interface
component that users can interact with on
the screen.

• Widgets are an essential part of the Android
development framework and are used to
build the graphical user interface (GUI) of an
Android application.

• Widgets can include a variety of elements
such as buttons, text fields, images,
checkboxes, radio buttons, toasts, and more.







Widgets and Attributes
• Widgets have attributes that describe how they

should behave.
• Attributes of widgets in Android are properties

that define the appearance, behavior, and
characteristics of user interface elements
within an Android application.

• These attributes are specified in XML layout
files and are used to customize the widgets
according to the application's design.

• Those attributes can be modified by a
“Properties” view in the graphical layout editor
of the IDE.



Common Widget Attributes:

• Common Attributes for Views:

– android:id: Unique identifier for the view.
– android:layout_width and

android:layout_height: Specify the width and
height of the view.

– android:layout_margin and
android:layout_padding: Set the margin and
padding for the view.



TextView Attributes:
android:text: Sets the text content of the
TextView.
android:textSize: Specifies the text size.
android:textColor: Sets the text color.



• EditText Attributes:

• android:hint: Sets the hint text (displayed
when the EditText is empty).

• android:inputType: Specifies the input type (e.
g., text, number, password).



• Button Attributes:

• android:text: Sets the text displayed on the
button.

• android:onClick: Specifies the method to be
called when the button is clicked.





Simple Calculator using Widgets for
Addition

• To create a simple calculator in Android for
addition, you can use widgets such as
EditText for input, Button for numeric and
operator buttons, and a TextView to display
the result. Here's a basic example:

• 1. Layout (activity_main.xml):

• Create the layout file
(res/layout/activity_main.xml) with EditText,
Buttons, and a TextView:







Activity (MainActivity.java):
Handle the button click and perform addition in the

activity (MainActivity.java):






