

Mobile application development

» What is mobile application development?

* Mobile application development is the process
of making software for smartphones, tablets and
digital assistants, most commonly for the
Android and iOS operating systems.

» The software can be preinstalled on the device,
downloaded from a mobile app store or
accessed through a mobile web browser.

 The programming and markup languages used
for this kind of software development include
Java, Kotlin, Swift, C# and HTMLS5.

Three main types of Mobile
Applications

* Progressive Web Apps-web-based applications that
work on different platforms and devices-combine the
best features of both web and mobile apps-HTML,
cgs, and JavaScript-Twitter Lite, Flipkart, Pinterest,
Uber etc.

 Native Applications-developed for a specific platform,
such as Android or i0OS, using the platform's native
programming languages and development tools, such
as gwh;[or Objective-C for iOS and Java or Kotlin for
Androl

» Hybrid Applications-Hybrid apps combine elements
of both web and native apps- run on multiple
platforms-single codebase that can be deployed

across different operating systems, such as iOS and
Android.

» What is Android 0OS?
» Android OS is a Linux-based mobile operating system that

primarily runs on smartphones and tablets.

Android is an operating system developed by Google. It is
a modified version of Linux kernel and other open-source
software.

Today android used in many electronic devices like
touchscreen mobile, tablets, Android TV, Android Auto for
Carsfand Android watches each with a spemahzed user
Interface.

Android is also used on the game, digital cameras other
electronics.

» The Android platform includes an operating system based

upon the Linux kernel, a GUI, a web browser and end-user
applications that can be downloaded.

» Android is based on open source software,
but most Android devices come preinstalled
with a suite of proprietary software, such as

Google Maps, YouTube, Google Chrome and
Gmail.

« Android OS versions

 Google makes incremental changes to the
OS with each release.

» This often includes security patches and
performance improvements.

Evolution of Android

Android 1.0. Released Sept. 23, 2008. Included a suite of Google
apps, including Gmail, Maps, Calendar and YouTube.

Android 1.5 (Cupcake). Released April 27,2009. Introduced an
onscreen virtual keyboard and the framework for third-party app
widgets.

Android 1.6 (Donut). Released Sept. 15, 2009. Introduced the
ability for the OS to run on different screen sizes and resolutions;
added support for CDMA networks.

Android 2.0 (Eclair). Released Oct. 26, 2009. Added turn-by-turn
voice navigation, real-time traffic information, pinch-to-zoom
capability.

Android 2.2 (Froyo). Released May 20, 2010. Added dock at the
bottom of the home screen and voice actions, which allows users
to tap an icon and speak a command. Also introduced support for
Flash to the web browser.

Android 2.3 (Gingerbread). Released Dec. 6, 2010. Introduced
black and green into the Ul.

Android 3.0 to 3.2 (Honeycomb). Released Feb. 22, 2011. This
release was exclusive to tablets and introduced a blue,
space-themed holographic design.

Android 4.0 (Ice Cream Sandwich). Released Oct. 18, 2011.
Introduced a unified Ul to both tablets and smartphones;
emphasized swiping as a navigational method.

Android 4.1 to 4.3 (Jelly Bean). Released July 9, 2012, Nov. 13,
2012, and July 24, 2013, respectively. Introduced Google Now, a
day planner service. Added interactive notifications and improved
voice search system.

Android 4.4 (KitKat). Released Oct. 31, 2013. Introduced lighter
colors into the Ul, along with a transparent status bar and white
icons.

» Android 5.0 (Lollipop). Released Nov. 12, 2014.
Incorporated a card-based appearance in the design with
elements such as notifications and Recent Apps list.
Introduced hands-free voice control with the spoken "OK,
Google" command.

* Android 6.0 (Marshmallow). Released Oct. 5,2015. This
release marked Google's adoption of an annual release
schedule. Introduced more granular app permissions and
support for USB-C and fingerprint readers.

* Android 7.0 and 7.1 (Nougat). Released Aug. 22,2016 and
Oct. 4, 2016, respectively. Introduced a native split-screen
mode and the ability to bundle notifications by app.

» Android 8.0 and 8.1 (Oreo). Released Aug. 21,2017
and Dec. 5, 2017, respectively. These versions
introduced a native picture-in-picture (PIP) mode and
the ability to snooze notifications. Oreo was the first
version to incorporate Project Treble, an effort by
OEMSs to provide more standardized software updates.

» Android 9.0 (Pie). Released Aug. 6, 2018. This version
replaced Back, Home and Overview buttons for a
multifunctional Home button and a smaller Back
button. Introduced productivity features, including
suggested replies for messages and brightness
management capabilities.

» Android 10 (Android Q). Released Sept. 3, 2019.

Abandoned the Back button in favor of a swipe-based
approach to navigation. Introduced a dark theme and
Focus Mode, which enables users to limit distractions

from certain apps.

» Android 11 (Red Velvet Cake). Released Sept. 8, 2020.
Added built-in screen recording. Created a single
location to view and respond to conversations across
multiple messaging apps. This version also updated
the chat bubbles so users can pin conversations to
the top of apps and screens.

» Android 12 (Snow Cone). Released Oct. 4, 2021.
Added customization options for the user interface.
The conversation widget let users store preferred
contacts on their home screens. Added more privacy
options, including sharing when apps access
information such as camera, photos or microphone.

» Android 12L. Released March 7,2022.The L stands
for larger screens. This update aimed to improve the
user interface and optimize for the larger screen of a
tablet, foldable or Chromebook. This update added a
dual-panel notification center for tablets and foldables.

Android 13 (Tiramisu). Released Aug. 15, 2022. Included more

customizab
Security upd

e options including color, theme, language and music.
ates included control over information apps can access,

notification
information

nermission required for all apps and clearing of personal
on clipboard. This update enables multitasking by sharing of

messages, chats, links and photos across multiple Android devices -

including ph

ones, tablets and Chromebooks.

Android 14 (Upside Down Cake). Released Oct. 4, 2023. Included more
customization options for the lock screen and wallpapers. OS efficiency
was improved to decrease the strain on a phone’s battery. For
accessibility, Google added larger scalable fonts for vision-impaired
users and camera flashes to give hearing-impaired users another visual
cue when they get a notification. Security updates include notifications of
changes in data-sharing policies for third-party applications, enhanced

PIN security

features and better support for passkey authentication

across more applications.

Building Blocks of Android

The building blocks of Android are the fundamental components
that make up the structure of an Android application.

These building blocks work together to create a functional and
Interactive user experience.

There are four building blocks to an Android application:
Activity

Intent Receiver

Service

Content Provider

Not every application needs to have all four, but your application
will be written with some combination of these.

Once you have decided what components you need for your
application, you should list them in a file called
AndroidManifest.xml. This is an XML file where you declare the
components of your application and what their capabilities and
requirements are.

Activity .

Activities are the most common of the four Android
building blocks.

An activity is usually a single screen in your application.

Each activity is implemented as a single class that
extends the Activity base class.

When a new screen opens, the previous screen is paused
and put onto a history stack.

The user can navigate backward through previously
opened screens in the history.

Acti\(ities are defined in Java or Kotlin classes and are
crucial for handling user interactions.

Intent and Intent Filters :

Android uses a special class called Intent to move from screen to
screen. Intent describe what an application wants done.

Intents are messaging objects used to communicate between
different components within an application or between different
applications.

They facilitate the transfer of data and trigger actions.

The two most important parts of the intent data structure are the
action and the data to act upon.

Typical values for action are MAIN (the front door of the
application), VIEW, PICK, EDIT, etc. The data is expressed as a
Uniform Resource Indicator (URI).

-or example, to view a website in the browser, you would create an
ntent with the VIEW action and the data set to a Website-URI.

new Intent(android.content.Intent.VIEW_ACTION,
ContentURI.create("http://anddev.org"));

Java files use Intents to facilitate communication between
different components of the application, such as starting new
activities or services.

Types of Intents

» Explicit Intents-Launching an activity within the
same application

» An Explicit Intent is used to launch a specific
component within the same application,
typically by providing the target component's
class name.

* Intent explicitintent = new
Intent(CurrentActivity.this,
TargetActivity.class);

» startActivity(explicitintent);

Implicit
» An Implicit Intent is used when the system is asked to
find a suitable component to handle the specified
action, such as opening a web page, sending an
email, or capturing a photo).
» Action or Action and Data Specified:

— Instead of specifying a particular component, an Implicit
Intent includes an action (e.g., "ACTION_VIEW,"
"ACTION_SEND") and, optionally, data (e.g., a URI).

— The system resolves the Intent and launches the
appropriate component capable of handling the specified

action.
» Example: Opening a web page:

— Intent implicitintent = new Intent(Intent. ACTION_VIEW,
Uri.parse("https://www.example.com"));
startActivity(implicitintent);

Key Differences:

* Explicit Intent:

* Target component is explicitly specified.

* Used for intra-application communication.

* The class name or component identifier 1s included.

* Commonly used for navigating between activities within the same application.
* Implicit Intent:

* Target component i1s not explicitly specified.

* Used for inter-application communication.

* Specifies an action (and optionally data).

* The system resolves the Intent and launches the appropriate external component.

Services:

Services are components that run in the
background, independent of any user interface,
to perform long-running operations or handle
tasks such as playing music or downloading
data.

the media player activity could start a service
using Context.startService() to run in the
background to keep the music going.

Services don't have a Ul but can communicate
with other application components.

Content Provider:

Applications can store their data in files, a SQLite
database, preferences or any other mechanism that
makes sense.

Content Providers manage the application's data and
enable sharing data between applications.

A content provider, however, is useful if you want your
application's data to be shared with other applications.

A content provider is a class that implements a
standard set of methods to let other applications
store and retrieve the type of data that is handled by
that content provider.

Broadcast Receivers:

Broadcast Receivers respond to system-wide
broadcast announcements or messages.

They allow the application to receive and
respond to events like the completion of a
download or a change in network
connectivity.

Broadcast receivers can initiate other
components or services.

* Fragments:

* Fragments represent a portion of a user
interface and can be combined to create a
complete UL.

 Fragments are often used within activities to
build more modular and flexible user
interfaces, especially for tablet layouts or
large-screen devices.

Layouts and Views:

Layouts define the structure of the user
interface

Views are the Ul elements such as buttons,
text fields, and images.

Android provides a variety of layouts and
views that can be combined to create the
desired user interface.

Manifest File:

The AndroidManifest.xml file is a fundamental
configuration file in an Android application.

It contains essential metadata and declarations
required by the Android Operating System to
understand the structure and behavior of the app.

Below are the key components typically found in the
AndroidManifest.xml file:

It includes details like the app's package name, the
components it consists of, required permissions, and
more.

Explanation of key elements:

Package Declaration (package attribute):
— Specifies the unique identifier for the application. It's typically in reverse domain format.
Permissions (<uses-permission> element):

— Declares the permissions required by the application. For example, the INTERNET permission
is declared to allow internet access.

Application Information (<application> element):

— Contains general information about the application, such as its icon, label, theme, and
whether it supports right-to-left (RTL) languages.

Launcher Activity (<activity> element with <intent-filter>):

— Declares the main activity of the apﬁlication, which is the entry point. The <intent-filter>
specifies that it should respond to the MAIN action and be launched as the main activity.

Other Components (<activity>, <service>, <receiver>, <provider>):

— Additional components of the application, such as activities, services, broadcast receivers,
and content providers, are declared within the <application> element.

Minimum and Target SDK Versions (<uses-sdk> element):
— Specifies the minimum and target SDK versions required by the application.

<?xml version="1.0" encoding="utf-8"?>

<manifest
xmins:android="http://schemas.android.com/apk/res/a
ndroid"

package="com.example.myapp">

<I-- Permissions -->

<uses-permission android:name="android.permission.
INTERNET' />

<!-- Application Information -->

<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundlcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">

<l-- Launcher Activity -->

<activity
android:name=".MainActivity"
android:label="@string/app_name">
<intent-filter>

<action
android:name="android.intent.action.MAIN" />

<category
android:name="android.intent.category.LAUN
CHER" />

</intent-filter>
</activity>

<!-- Other Activities, Services, Broadcast
Receivers, and Content Providers -->

</application>
<l-- Minimum and Target SDK Versions -->
<uses-sdk

android:minSdkVersion="16"

android:targetSdkVersion="30" />

</manifest>

1.

™.

L

(N

XML Filles:

User Interface (Ul) Definition:
= XML files, located in the "res/flavout™ directory, are commonly used to define the
structure and appearance of the user interface. They specify the arrangement of U

elements such as buttons, text fields, iImages, and layouts.

. Layout Configuration:

= XML files are used to configure layouts and define the arrangement and
appearance of Ul components. Different layout types (e.g., LinearLayout,
RelativeLayout) and attributes (e.g.. width, height, padding) are specified in XML to

control the visual presentation.

. Resource Declarations:

* XML 1s used to declare various resources like strings, colors, dimensions,
drawables, and styles. These resources can be referenced in both XML and Java
files, promoting consistency and easy maintenance.

Menus and Drawables:

= XML files are used for defining menus (res/menu) and drawable resources

(res/drawable). Menus specify the options in an app's action bar or overflow menu,

while drawables define images, shapes, and other graphic resources.

CAnimation and Transition:

* Animation and transition effects can be defined using XML in the "res/fanim™ and
"resSftransition directories. These XML files describe the behavior of

animations and transitions.

Java (or Kotlin) Files:
1. Application Logic:

= Java (or Kotlin) files, often found in the "sxe”™ directory, contain the code that
defines the behavior and logic of the Android application. This includes handling

user interactions, processing data, and implemaenting the applhication's
functionality.

2. Activity and Fragment Code:

* Jawva files define the behawvior of activities and fragments. They handle hifecycle
events, respond to user Input, and Nnteract with the Android framework. Each

activity typically has a corresponding Java (or Kotlin) file that extends the
TActiwvity T class.

—

2. Event Handling:

= Jawva files contain event-handling code, responding to user interactions such as
button chicks, itemn selections, or touch gestures. Event listeners are often
implemented in Java to handle these interactions.

4. Data Processing and Business Logic:

* Jawva files implemeaent the core logic of the apphcation, including data processing,

business rules, and any backend commumnmication. They may interact with
databases, APIls, or other external services.

S Asynchronous Tasks:

Background tasks and asynchronous operations are often implemented in Java (or

Kotlin) files. These tasks run separately from the main thread to avoid blocking the
user interface during resource-intensive operations.

. Adapter and RecyclerView Handling:

= Adapters for RecyclerViews, ListWiews, and other Ul components are implemented

in Jawva files. These adapters connectd .. ources to Ul elements, facilitating
dynamic content display.

Anatomy of Android

 The anatomy of Android refers to the various
components(4), layers(5), and conceptsﬁUser
Interface (Ul), Intent System, Manifest File) that make
up the Android operating system and its application
development framework.

 Android architecture is also known as the Android
software stack.
* |t can be categorized into five parts:
— Linux kernel
— Native Libraries (Middleware)
— Android Runtime
— Application Framework
— Applications

Applications

Third Party Apps

Native Android Apps
N

-

Application Framework

Activity Window Notification View XMPP
Manager System Service

Manager

Manager
Location Package Resource Content Telephony
Manager Providers Manager

Manager Manager

Libraries . .
Android Runtime
OpenGL ES >
Core]

Libraries

Surface Media _
Machine]
SSL SGL N

Linux Kernel
Display WiFi Audio Binder (IPC)
Driver Driver Drivers Drivers

Bluetooth
Driver

Camera Power Process Memory Flash Memory
Driver Management Management B Management Driver

 Linux kernel:

 Linux kernel exists at the root of android
architecture and is thus also called as the
heart of the android architecture.

* The device drivers, power management,
memory management, device management,
and resource access comes under the
responsibility of the Linux Kernel.

Native Libraries:
Native libraries such as WebKit, OpenGL,
FreeType, SQLite, Media, C runtime library (libc),

etc are on top of the Linux kernel.

Sl.No. Library Responsibility
1 WebKit library Browser support
2 SQLite Database

3 Freelype Font support

4 Media Playing and recording audio and video formats

« Android Runtime:

* The core libraries and DVM (Dalvik Virtual
Machine) are there in android runtime.

* They are responsible for running android
applications.

* Originally being like JVM, DVM is optimized
for mobile devices to consume less memory
and to facilitate a fast performance.

« Android Framework:

» The Android framework is on the top of Native
libraries and android runtime.

» Android APIs like Ul (User Interface), telephony,
resources, locations, Content Providers (data)
and package managers are a part of the Android
framework.

» For the development of the android application,
the Android framework facilitates a lot of
classes and interfaces.

Android Activity Lifecycle

» Android Activity Lifecycle is controlled by 7
methods of android.app.Activity class. The
android Activity is the subclass of
ContextThemeWrapper class.

» An activity is the single screen in android. It is
like window or frame of Java.

» By the help of activity, you can place all your Ul
components or widgets in a single screen.

» The 7 lifecycle method of Activity describes
how activity will behave at different states.

Android Activity Lifecycle methods

Let's see the 7 lifecycle methods of android activity.

Method

onCreate
onStart
onResume
onPause
onStop
onRestart

onDestroy

Description

called when activity is first created.

called when activity is becoming visible to the user.

called when activity will start interacting with the user.

called when activity is not visible to the user.
called when activity is no longer visible to the user.
called after your activity is stopped, prior to start.

called before the activity is destroyed.

Object

!

Context

!

ContextWrapper

ContextThemeWrapper

Activity

onStart() - I onRestart()

User navigates
to the activity

onResume() -

Another activity comes
into the foreground

User returns
+ to the activity

Apps with higher priority |
need memaory cnPause)

I
The activity is
no longer visible

User navigates
+ to the activity

oS0 |

The activity is finishing or
being destroyed by the system

v

onDestroy()

v

File: activity_main.xml

<?xml version="1.0" encoding="utf-8"7=
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android'
xmlns:app="http://schemas.android.com/apk/res-auto”
xmlns:tools="http://schemas.android.com/tcols”
android:layout_width="match_parent”
android:layout_height="match_parent”

tools:context="example javatpoint.com.activitylifecycle.MainActivity” =

<TextView
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:text="Hello World!"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toleftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent” /=

= /android.supbport.constraint.ConstraintLavout:

» Android Activity Lifecycle Example

» |t provides the details about the invocation of
ife cycle methods of activity. In this example,
we are displaying the content on the logcat.

» Override a method from the superclass
(Activity in this case)

Fite: MainActivityjava
@Overnde

. . C e 1 rotected void onResume() {
package example.javatpoint.com.activitylifecycle; e
super.onResume();

Log.d("lifecycle”,"onResume invoked™);

import android.app.Activity; }

; : @Override
import android.os.Bundle;

protected void onPause() {
import android.util.Log; o s

Log.d("lifecycle”,"onPause invoked™);

h

public class MainActivity extends Activity {
@Override

protected void onStop() {

@Qverride super.onStop();
Log.d("lifecycle”,"onStop invoked™);

}
super.onCreate(savedinstanceState); @Override

protected void onCreate(Bundle savedinstanceState) {

setContentView(R.layout.activity_main); protected void onRestart() {

super.onRestart();

Log.d("lifecycle”,"onCreate invoked");
! }

@Override @Override
protected void onDestroy() {

Log.d("lifecycle”,"onRestart invoked™);

protected void onStart() {
super.onDestroy();

super.onstart(); Log.d("lifecycle”,"onDestroy invoked™);

Log.d("lifecycle”,"onStart invoked”); }

M

(

n

. "@0verride” Annotation:

* This annotation indicates that the method is intended to override a method from
the superclass (" Activity” In this case). It is a good practice to include this

annotation for clarity and to ensure that you are indeed overriding a method.

. "protected void onCreate(Bundle savedInstanceState) !

* This is the method signature. It declares that the method is “protected”, returns
“void’, and takes a single parameter of type "Bundle™ named

"savedInstanceState’.

"super.onCreate(zavedInstanceState) ":

* This calls the “onCreate”™ method of the superclass (" Activity). It is crucial to
call the superclass method to ensure that the default setup tasks are performed

before any additional initialization in the derived class.

“ff setContentView and other initialization tasks here™:

* This is where you perform specific initialization tasks for your activity. Common
tasks include setting the content view (using ~setContentView™ to define the Ul

layout), initializing Ul elements, binding data, and other setup steps.

. "Bundle savedInstanceState :

* The "savedInstanceState”™ parameter is used to retrieve the previous state of the
activity if it was destroyed and recreated. For example, if the device is rotated, the
activity is recreated, and any data stored in the “savedInstanceState™ bundle can

be used to restore the previous state.

Output:

You will not see any output on the emulator or device. You need to open logcat.

* Bundle parameter,

which is used to
restore the activity's
previous state if it was
previously destroyed
and recreated (e.g.,
due to a configuration
change).

Notifications and Toast messages

» Notifications and Toast messages are distinct
features in Android, each serving a different

purpose.

* Notifications are typically used to alert users
about events or updates even when the app is

not currently active, while

» Toast messages are used for displaying
short-lived messages within the app's Ul.

* |If you want to create a notification in Android,
you would typically use the NotificationManager
along with a Notification object.

Q. Name the widget used to display a short message.
List the members of that object and give an example.

» Case Study: Improving User Feedback with
Android Toasts

» Background: You are a developer working on a
mobile application for a social networking
platform. The app allows users to share posts,
comment on content, and interact with other
users. Users have provided feedback indicating
that they want more informative and
non-intrusive feedback for certain actions,
especially when posting comments or liking
posts.

* Implementing Toasts for Comment
Posting:When a user successfully posts a
comment, a short-duration Toast is displayed
at the bottom of the screen, confirming the
action.

» |f there is an issue with posting the comment
(e.g., network error), an error Toast is
displayed, alerting the user to try again.

* // Inside the code for posting a comment
» if (commentPostedSuccessfully) {

Toast.makeText(context, "Comment posted
successfully”, Toast. LENGTH_SHORT).show();

*)
+ else{

+ Toast.makeText(context, "Failed to post

comment. Please try again.",
Toast.LENGTH_SHORT).show();

*)

Q. Name the widget used to display a short message.
List the members of that object and give an example.

* The widget used to display a short-duration message
in Android is called Toast.

» The Toast class is part of the android.widget package
and is commonly used to show brief messages to the
user.

* Members of the Toast Object:

+ makeText() Method:

— Static method to create a new Toast object.

— Takes parameters such as the application context, the
text message to be displayed, and the duration of the
toast.

» show() Method:
— Displays the Toast message on the screen.

Example:Toast widget in Android

» // Inside an Activity or a Context
» Context context = getApplicationContext();

» CharSequence message = "This is a short
message!’;
* int duration = Toast.LENGTH_SHORT;

» Toast toast = Toast.makeText(context,
message, duration);

» toast.show();

In this example:

» context: The application context or activity
context where the Toast is being displayed.

message: The text message to be shown in the
Toast.

duration: The duration for which the Toast
should be displayed. It can be either
Toast.LENGTH_SHORT or Toast.LENGTH_LONG.

makeText(): Creates a new Toast object with
the specified parameters.

+ show(): Displays the Toast on the screen.

Android Widgets and Attributes

* In Android, a widget is a user interface
component that users can interact with on
the screen.

» Widgets are an essential part of the Android
development framework and are used to
build the graphical user interface (GUI) of an
Android application.

» Widgets can include a variety of elements
such as buttons, text fields, images,
checkboxes, radio buttons, toasts, and more.

N

o

o b

[

. TeaxctView: Displays text on the screen.
. EditText: Allows users to input text.

Button: Eepresents a clickable button.

ImageView: Displays images.

CheckBox: A box that can be checked or unchecked.

RadioButton: A button that can be either checked or unchecked, within a group of
radio buttons.

ToggleButton: A button that can be in either an "on™ or "off” state.

SeekBar: Allows users to select a value from a range by shding a thumib.

ProgressBar: Displays a visual indication of the progress of an operation.

). Spinner: A drop-down menu for selecting an item from a list.

. Switch: A two-state toggle switch.

. RatingBar: Allows users to rate something by selecting a number of stars.
. DatePicker: A widget for selecting a date.

. TimePicker: A widget for selecting a time.

. ListView: Displays a scrollable list of items.

. RecyclerView: A more flexible and advanced version of ListView for displaying large

sets of data.

. GridLayout: A layout manager that arranges its children in a gnid.

LinearLayout: A layout manager that arranges its children in a single column or row.

. FramelLayout: A simple layout manager that stacks its children on top of each other.

). RelativeLayout: A layout manager that arranges its children relative to each other or

to the parent.

<LinearlLayout

<TextView

</LinearlLayout>

Widgets and Attributes

» Widgets have attributes that describe how they
should behave.

» Attributes of widgets in Android are properties
that define the appearance, behavior, and
characteristics of user interface elements
within an Android application.

 These attributes are specified in XML layout
files and are used to customize the widgets

according to the application's design.

» Those attributes can be modified by a

“Properties” view in the graphical layout editor
of the IDE.

Common Widget Attributes:

« Common Attributes for Views:

—android:id: Unique identifier for the view.
— android:layout_width and

android:layout_height: Specify the width and
height of the view.

— android:layout_margin and
android:layout_padding: Set the margin and
padding for the view.

TextView Attributes:
android:text: Sets the text content of the
TextView.
android:textSize: Specifies the text size.
android:textColor: Sets the text color.

<TextView

« EditText Attributes:

» android:hint: Sets the hint text (displayed
when the EditText is empty).

» android:inputType: Specifies the input type (e.
g., text, number, password).

<EditText

« Button Attributes:

» android:text: Sets the text displayed on the
button.

» android:onClick: Specifies the method to be
called when the button is clicked.

Button

<LinearlLayout

<TextView

</LinearlLayout>

Simple Calculator using Widgets for
Addition

 To create a simple calculator in Android for
addition, you can use widgets such as
EditText for input, Button for numeric and
operator buttons, and a TextView to display
the result. Here's a basic example:

» 1. Layout (activity_main.xml):

* Create the layout file

(res/layout/activity_main.xml) with EditText,
Buttons, and a TextView:

<?xml version= encoding=

<Relativelayout

<EditText

<EditText

<Button

<TextView

</Relativelayout>

Activity (MainActivity.java):
Handle the button click and perform addition in the
activity (MainActivity.java):

android.os.Bundle;
android.view.View;
android.widget.Button;
android.widget.EditText;

android.widget.TextView;

androildx.appcompat.app.AppCompatActivity;

EditlText editTextMumberl, editTextNumber?;

Button btnAdd;
TextView textViewResult;

@0verride
(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R. layout.actaivity_main) ;

editTextNumberl = findViewById(R.1d.editTextNumberl);
editTextNumber2 = findViewById(R.1d.editTextNumber2);
btnAdd = findViewById(R.1id.btnAdd);

textViewResult = findViewByld(R.1d.textViewResult);

btnAdd.setOnClicklListener(OnClicklListener() {
@lverride

(View view) {

el e Tl Tl e e e

calculateAndDisplayResult();

() {

editTextNumberl.getText().toString();
editTextNumber2.getText().toString();

('numlStr.isEmpty() && !num2Str.isEmpty()) {

Double.parseDouble (numlStr);
Double.parseDouble (num25tT) ;

= numl + num?2;

textViewResult.setText(+ result);
{

textViewResult.setText(

